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LEITER TO THE EDITOR 

On the critical dynamics of the diluted Q-state Potts models 
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Cambridge, Lensfield Road, Cambridge CB2 IEW, U K  

Received 7 October 1987, in final form 9 November 1987 

Abstract. The results of Monte Carlo simulations of the four-state Potts model on a square 
lattice at the bond percolation threshold are presented. Estimates are given for the new 
dynamical exponents A and B. Our result for A is in clear contradiction with a recent 
conjecture of Nunes da Silva and Lage. 

A recent [ 13 neutron scattering experiment on Rb,Co,Mg,-,F,, a site-diluted two- 
dimensional Ising antiferromagnet, near the percolation threshold, p c  = 0.5927, has 
generated considerable interest [2-81 in the critical dynamics of diluted spin systems. 

In the dynamic scaling hypothesis the average relaxation time, T ~ ~ (  T ) ,  scales as 

ln(TAV( T ) )  =f(ln [J) (1) 

where tT is the thermal correlation length. Conventional dynamic scaling [9] would 
imply thatf(1n tJ) - Z(ln tJ), where Z is a dynamic critical exponent. For percolating 
systems ( p  = p c ) ,  however, it is found [2-81 that 2 is no longer a constant but a 
temperature-dependent function 

Z (  T )  = A(ln &) + B. (2)  
Very recently, the breakdown of dynamic scaling has also been confirmed for 

two-dimensional diluted Potts models [6,7] and the bond-diluted Ising model on 
hypercubic lattices [8]. The analytic work of Nunes da Silva and Lage [7,8] is 
particularly interesting because it suggests that the new dynamical exponents depend 
very strongly on both the dimensionality, d, and the number of spin components, q. 

The dimensionality and symmetry of the problem are two crucial factors governing 
the critical behaviour of a system. By varying just the number of spin components and 
keeping fixed all other features of the system (the type of dilution, the updating rate, 
etc) we are able to investigate the q dependence of the dynamic behaviour. 

In this letter we present the results from Monte Carlo simulations of the two- 
dimensional four-state Potts model on a square lattice at the bond percolation threshold. 
We shall show that our results contradict Nunes da Silva and Lage [7]. 

We choose the Hamiltonian to be 

= -E Jg6qo ,  ( 3 )  
( v )  

where a,(a,  = 1,. . . , q )  are the Potts spins situated on every site of a 64x64 square 
lattice ( q  = 4 in our simulations) and the nearest-neighbour ferromagnetic couplings 
are selected according to 

P ( J v ) = f [ S ( J , , ) + ~ ( J I J -  1)l. (4) 
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Imposing periodic boundary conditions, we update the spins via the Metropolis 
transition probability. The data were collected over the temperature range 0.44 6 
T/ TJpure) s 1.10 and have been averaged over 10-248 samples; the largest statistical 
error bar is less than 10%. The only difference between the system discussed here and 
the one simulated by Jain er al[6] is the number of Potts states (this should be consulted 
for further technical details). 

We define an average relaxation time by 

where N = 4096, the number of spins, and t = to indicates an equilibrium state of the 
system. The asymptotic behaviour of the spatial correlation function, 

where (. . .)T implies a thermal average and n ( n  = 0,1,  . . . , 10) is the displacement in 
the x direction, is given by 

w) - e x p ( - n / ~  for n >> tT. ( 7 )  

Equation ( 7 )  enables us to extract the thermal correlation length for any temperature. 
Now, one expects [lo] 

t T ( q )  = 5o(q) exp(Pv) (8) 

where /3 = 1/T, v(= v T )  is the (universal) thermal exponent and & ( q )  is the non- 
universal amplitude. 

In  figure 1 we show a plot of & ( q  = 3 ) / t T ( q  = 4) against T. The weighted line of 
best fit indicates that t o ( q  = 3 ) / t 0 ( q  = 4 )  = 1.20iz0.11. Since [6] t o ( q  =3)  =0.16*0.02, 
we have that t 0 ( q  = 4) = 0.141 0.03. Further, if we assume that v = $, the conjectured 
theoretical value [9], then we have that for all temperatures simulated tT << linear size 

0.5 
0.L 0.6 0.8 1 .o 

T 
Figure 1.  A plot of In & ( q  = 3)/ln & ( q  = 4) against T. The intercept on the y axis implies 
that &(9 = 3)/t0(9 = 4)  = 1.20*0.11. 
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of the lattice and & >.> 1 for T < 0.625. So our results are not expected to be influenced 
by finite-size effects [4]. 

Writing 

In T ~ ~ =  Y l / T 2 +  Y 2 / T +  Y3 (9) 

we have that A( q )  = Y l /  U', B( q )  = v-'( Y2 - 2 Y ,  Y-' In to( q ) )  and Y3 = constant. In 
figure 2 we show In T~~ against 1/ T. The best quadratic fit to the data for T -= - 0.625 
gives A(q = 4) = 0.56 * 0.04 and B ( q  = 4) = 4.76 f 0.80. Table 1 contains the various 
estimates which have been made for A(q) and B ( q )  in two dimensions. We note that 
the value of A(q = 4) is not consistent with the conjecture of [7] who suggest that 
A( q = 4)/A( q = 2) = $ 

We can make a more direct comparison with the q = 3 case by considering 

In[ T A v (  4 = 3)/ TAV( 4 = 4)] = C l , /  T2  f C l 2 /  T + C l 3  (10) 

where a1 = v2[A(q=3)-A(q=4)] ,  a 2 =  v{2[A(q=3)5 , (q=3)-A(q=4)5 , (q=4)1+ 
(B( q = 3) - B ( q  = 4))) and a3 = constant. Thus, A( q = 3)  = A( q = 4) would imply that 
a plot of In[ TAv(q = 3)/ 7 A V ( q  = 4)] plotted against 1 /  T should be linear. Such a plot 
is shown in figure 3.  The line of best fit for T s 0.625 has slope 1.00+0.22 and intercept 
-1 .75k0 .30 .  The data presented in table 1 are consistent with a slope in the range 

l l T  

Figure 2. A plot of In T~~ against I /  T for 9 = 4. The quadratic fit  shown yields A( 9 = 4 )  = 
0.56 f 0.04 and B( 9 = 4)  = 4.76 i 0.80. 

Table 1. The behaviour of A ( 9 )  and B ( 9 )  for d = 2 .  

Reference 4 9 )  B ( q )  

Jain [4]; 9 = 2 0.51 k0.05 3.25 20.41 
Jain et al [ 6 ] ;  9 = 3 3 .35  * 0.88 
This work; 9 = 4 4.76 f 0.80 
Nunes da Silva and Lage [7] 

0.78 f 0.15 
0.56 * 0.04 

A ( q ) / A ( 2 ) = 2 ( q -  I ) / q  



L182 Letter to the Editor 

1 0  i 

1 / T  

Figure 3. A plot of In[r,,(q = 3) /  T,"( q = 4)] against 1 /  T. The straight line, which has 
slope l.OOi0.22, is a consequence of assuming that A ( q  = 3)  = A ( q  = 4). 

-4.19 to 0.53. Note that, if we also have B ( q  = 3)  = B ( q  = 4), then the slope would 
be expected to be 0.05 f 0.12. So it would appear that A is possibly independent of 
q. B, however, probably depends on the number of Potts states. 

To conclude, we have given estimates for the new dynamical exponents A and B 
for the four-state Potts model at the bond percolation threshold. Our results, although 
in agreement with Jain et a1 [ 6 ] ,  contradict a recent conjecture of Nunes da Silva and 
Lage [7]. 
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